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Using a continuous flow stirred tank electrochemical reactor model, the stability and transient response 
of electrolytic reactors is analysed in terms of a Liapunov function and digital simulation. 

Nomenclature T 

AE electrode area ira 
Ai reactor wall area; i = 2, 3, 4, 5 denote the TF 

four vertical walls of a rectangular tank;A1 t 
is tank bottom area;A6 is area of the electro- U 
lyte surface Ui 

b slope of the polarization curve 
c electrolyte concentration; ci its inlet value; V(x) 

c* its steady state value V t 
Cp specific heat of the electrolyte Xx 
dl thickness of the reactor walls x2 
F Faraday's constant z 
G electrolyte mass flow rate a,/3 
h6 heat transfer coefficient associated with elec- 

trolyte surface A 6 AHR 
I electric current e, 6 
k geometric aspect ratio (electrode separation 3' 

distance divided by electrode area) P 
k, thermal conductivity of the reactor wall 0 
me mass of the electrolyte in the reactor p 
Q quantity defined by Equation 8a o 
QL rate of heat dissipation r 
q electrolyte volumetric flow rate 
R quantity defined by Equation 8b 
Re electrolyte resistance 
S quantity defined by Equation 8c 

electrolyte temperature; Ti its inlet values, 
T* its steady state value 
ambient temperature 
floor temperature 
time 
voltage drop 
wall-to-ambient overall heat transfer coeffi- 
cient associated with wall A i 
Liapunov function 
active reactor volume (free electrolyte volume) 
dimensionless temperature 
dimensionless concentration 
valency 
lumped parameters defined by Equations 
19a and b 
heat of reaction 
parameters of the Liapunov matrix 
quantity defined by Equation 8e 
quantity defined by Equation 9a 
dimensionless time 
electrolyte density 
electrolyte conductivity 
quantity defined by Equation 9b 
quantity defined by Equation 8d 

Special symbols 21, 22 derivatives of xl and x2 
with respect to 0 (Equation 12) 

1. Introduction 

The analysis of the transient behaviour of electrochemical reactors has hitherto received relatively scant 
attention in terms of unsteady-state mathematical models, although such models have potential 
applications in the study and optimization of start-up and shut-down procedures, and temporary devi- 
ations from set operating conditions in an electrochemical plant. They also serve as basis for the under- 
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standing of the dynamics of electrochemical processes [1-4]. The rigorous treatment of electrochemical 
process transients is characteristically cumbersome due to the nonlinear nature of the governing differ- 
ential equations and interlocking nonlinear algebraic relationships. This mathematical complexity has 
been well illustrated in the instance of transient natural convection [5, 6]; simplified transient models, 
on the other hand, have been used with reasonable success in a number of electrolytic systems, e.g. 
packed bed electrodes [7]. Certain aspects of deviation from steady state continuous flow stirred tank 
electrochemical reactors (CSTER) and plug-flow reactors have been briefly discussed by Pickett [8] from 
a reactor-operation point of view. 

One of the pertinent questions regarding transient behaviour is the stability of the steady state, i.e. 
whether a system perturbed out of its set operating conditions will or will not return to its steady state. 
In electrochemical reactors perturbations occurring in current or voltage, concentration, flow rate or 
composition of the electrolyte will generate a transient operation which can be described in terms of 
appropriate mathematical models. Reactor stability is a well established concept in chemical engineering 
(see e.g. [9]) but it has not been treated in depth so far in the electrochemical reactor literature. The 
purpose of this paper is to demonstrate the power of transient modelling techniques and stability theory 
in dealing with electrochemical reactors; they can serve as a useful tool in the rational design of start-up 
and shut-down of such reactors, and the regulative control of their operation. A specific reactor type of 
CSTER was chosen as a working example in order to keep the mathematical involvement at a manage- 
able size. This reactor model has been widely discussed in the literature and its unsteady-state thermal 
behaviour has been the subject matter of recent publications [10, 11 ]. 

2. Transient and steady state behaviour of CSTER 

The reactor vessel considered is a rectangular tank containing a single pair of parallel plate electrodes. It 
is assumed that sufficient mixing via mechanical means or otherwise exists in the system to allow the 
lumped-parameter based CSTER approximation to describe the variation of electrolyte temperature and 
concentration with time. Electrolysis occurs either in a galvanostatic or a potentiostatic mode and there 
is one dominant reaction occurring at each electrode. Then, the CSTER model consists of a mass balance 
and a thermal balance; in the unsteady state these equations may be written, respectively, as 

de I 
Vt - ~ = qci -- qc - -~-  ~ (1) 

dT GCp T i -- GCp T - -  QL + I2Re :AHR me Cp d--'7 = -- z---~ (2) 

where the heat dissipation term may be expanded to 

QL = A I ( T - -  TF) + ~ UiAi(T--  TA) + h6A6(T--  TA) (3) 
1 i=2 

in a rectangular tank. Moreover, the electrolyte resistance may be expressed as 
k 

Re = o (4) 

where o is, of course, a function o fe  and T. We assume that the o(e, T) relationship is available as an 
appropriate regression constructed on the basis of experimental data, 

It will be advantageous to think in terms of dimensionless perturbation variables 

X 1 ~- ( r - - T * ) / T  i (5a )  

x 2 =- ( C - - C * ) / C  i ( 5 b )  

and dimensionless time 0 = tq /V  t, where (c*, T*) is a steady state of reactor operation. Then, the balance 
equations may be rewritten as 
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d x  1 
- -  = - - r  
dO 

(6) 

where 

dx2 
- -  = - x 2 - Q  
dO 

1 
Q ~ - - ( I - - I * )  

zFtci q 

1"3 
R moGrlq -o*] 

AHRVt 
s - q - z * )  

meCpzFTiq 

(7) 

(8a) 

(8b) 

(8c) 

5 

G k l A  1 i=2 h6A6 Vt ~, 
if ' - - - - - -4  t - - -  F - -  "~=- -  (8d) 

me meCpdl me@ me G q 

_ q  G 

Vt me 

If  we define, in addition, the parameters 

(8e) 

UiAi + h6A6 
p, ~ a-{-i=1 TAq klAl TF (93) 

me Cp Ti m e Cp d , Ti 

AHRI* (9b) 

mf~ 

k1.2 
r =_ 

me G, o *Ti 

then the steady-state conditions, i.e. where 

dxl dx2 

dt dt 

me Cpz FTi 

dxl dx2 
or - - O, can be expressed as 

dO dO 

i* 
c* = c i - - - -  (10a) 

7zFFt 
and 

F* + r 
(10b) T* = Ti ~, 

In this development the tacit assumption (to be verified in a specific reactor) was made that me and C~ 
are essentially independent of c and T within the region of perturbations. Equations 6-8 are descriptors 
of the time variance of the temperature and concentration deviations from the steady state prevailing 
before a perturbance in the system has occurred. 

3. Stability analysis of CSTER b e h a v i o u r  

The prime concern of stability analysis is to predict the end result of a disturbance occurring in a 
physical system: will the system eventually reach the same steady state, or a different steady state; will it 
oscillate or at worst, will it suffer physical destruction? Secondly, how is the transient behaviour 
affected by the amplitude of the perturbation? These questions can be answered usually without much 
difficulty if the system can be described adequately via a linear mathematical model by solving the 
linear differential equations and computing (lim Xl; t ~ co) and (lira xs; t -~ 0% In nonlinear systems this 
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approach can be very cumbersome and time consuming because no general conclusions can be drawn 
from a solution associated with a particular form of perturbation. Modern stability theory [12, 13 ] 
employs methods divorced from the actual solution of differential equations; one powerful method is 
based on Liapunov's theory of stability [9, l 2-16], in terms of algebraic Liapunov functions. As shown 
in Appendix A, Liapunov-based analysis of stability requires a relatively modest amount of algebraic 
computation. The method has found widespread applications in mechanics, space exploration, process 
control and chemical reactor engineering; it is beyond the scope of this paper to discuss the wealth of 
literature on this subject matter. 

Among various families of Liapunov functions explored in the literature, quadratic forms related to 
the total energy concept are usually the simplest to manipulate. Following the discussion in Appendix B, 

a positive definite symmetric matrix Q with a priori indeterminate elements e and 6, Q = 82 is 

chosen such that 82 -- e 2 > 0. Then, 

V(xl, x2) = (xl x2)( l e  ]{x,~ (11) e 82/ xq 
with its time derivative 

dV )(e 
dO (2a 22 82jtx  ] (x, 821t22 / 

Using Equations 6 and 7, Equation 12 may be written directly as 

1 dV 
. . . .  x 1 [ - ~ x 1 + R - S + e ( - x 2 - Q ) ] + x 2 [ e ( - - ~ x l + R - S ) + 8 2 ( - - x 2 - Q ) ]  (13) 
2 dO 

for the system discussed in this paper. Consider now a specific class of perturbations: a sudden change 
in the electrolyte temperature and/or concentration occurs in the CSTER. This perturbation is 
represented mathematically by 'initial' conditions x~ ~ and x2~ the problem is now to find the region in 
the (xl, x2) plane wherein any Xl ~ x2 ~ perturbation will let the CSTER eventually regain its previous 
steady state (0, 0) corresponding to (c*, T*). Inspection of Equation 11 indicates that the V(xl, x2) = 0 
and lim V(xl, x2) = ~ as xl -+ ~, x2 ~ ~ conditions are immediately satisfied, hence asymptotic stability 
is guaranteed wherever the dV/dO < 0 condition is met. The question of stability is thus reduced to a 
careful analysis of Equation 13. In many practical electrolytic processes the current-voltage relationship 
is linear: I = bU, where b is a parameter whose numerical value depends on the electrode separation 
distance, electrolytic concentration and temperature. In a first approximation we may assume that b 
remains reasonably independent of xl and x2; then, Equation 8 can be handled similarly to the galvano- 
static case, except that U replaces I, U* replaces I* (isomorphic representation) and the coefficient b is 
incorporated in appropriate terms. The principle of the approach is, therefore, invariant with respect to 
the mode of electrolysis. 

4. Illustrative example: electrodeposition of copper by galvanostatic electrolysis 

Table I summarizes the operating conditions of a CSTER where copper is deposited on a metal cathode 
and oxygen is generated at an indifferent anode. The density of the electrolyte is related [17] to com- 
position and temperature by the equation 

p = 1014.3 + 0.1484c--  0 .5Tkgm -3 (14) 

and its electrical conductance by the regression relationship 

o = 6.5676 x 10-3c~176 -1 (15) 

Equation 15 is based on 88 tabular data entries [17]; the coefficient of correlation is r = 0.988 within 
the 98.9 < c < 1322 and 20 < T < 70 range. In both Equations 14 and 15 the unit of concentration is 
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Table 1. Parameters of  cathodic copper deposition in a CSTER under galvanostatic conditions 

Reactor Thickness of polyethylene tank walls: dt = 0.007 m 
Vessel size: 0.7 m X 0.7 m X 0.7 m 
Free (electrolyte) volume: V t = 0.3881 m a 
Thermal conductivity of tank wails: k~ = 0.313 W m-~ K 
Wall-to-ambient heat transfer coefficient: h = 4.61 W m -2 K 
Electrolyte surface evaporation heat transfer coefficient: h a = 18 W m -2 K 
Reactor geometry factor: k = 1.47 m -~ 

Separation distance: g = 0.68 m 
Active electrode area: 0.68 m X 0.68 m (0.4624 m 2) 
Thickness: 0.002 m 

Aqueous copper sulphate 
Average density: ~5 = 1096.5 kg m -3 
Mass in reactor: m e = 425.5 kg 
Average specific heat: Cp = 4186 Ikg -~ K -~ 
Heat of overall reaction: AH R = 221.6 kJ mo1-1 Cu 

Inlet electrolyte concentration: e i = 850 tool m -3 
Electrolyte flow rate: G = 3 X 10 -4 kg s -~ 
Electric current: I = 41.6 A (18% of limiting current) 
Inlet electrolyte temperature: T i = 25 ~ C 
Ambient temperature: T A = 20 ~ C 
Floor temperature: T F = 20 ~ C 

Electrodes 

Electrolyte 

Operating Conditions 

tool m -a and the uni t  o f  t empera ture  is celsius. In consequence ,  4 '  = 0.082 89 h - l ;  3' = 2 .538 x 10 -3 h-a; 

TiP * =  1.670 76 Kh-1 ;  Ti~b * =  5.141 6 9 / 0 * - - 0 . 0 9 6  5 5 K h  -1. Then,  Equa t ion  10a yields c* = 

62.06 mol  m -a and Equa t ion  10b becomes  T* = 18.9115 + [512 .24 / (T*)  ~ which  yields, via an 

appropr ia te  root-search procedure ,  the value o f  T* = 69 ~ C. 

We shall proceed now to the  test o f  stabil i ty by  establishing the range (xl, x2) where a per turba t ion  

in c or T ( o r  bo th)  corresponding to initial per turba t ion  state (xl ~ x2 ~ will cause the reactor  to re turn 

to its s teady state c* = 62.06 mol  m-3; T* = 69 ~ C i.e. xl  = 0, x2 = 0. Rewri t ing Equa t ion  13 as 

1 dV 
-- ~Xl  2 - -  ~2X~ - -  e ( ~  + 1)XlX2 + R(x 1 -I- ex2) (1 6)  

2 dO 

it becomes  obvious that  one logical condi t ion  for its negative definiteness value is - -  e ( ~  + 1)x lx2  + 

R(x ,  + ex2) < 0, since the first two  terms are always negative. However ,  the resulting condi t ion  

1 4 + 1  
- x l  + x 2  ~< - - x l x 2  (17)  
e R 

leads to unacceptable  results: if, e.g. e is t oo  large, negative values o f  xl  would  be excluded and if  e is too  

small, negative values o f  x2 would  be excluded.  It  is bet ter ,  therefore ,  to search for condi t ions  which will 

render  dV/dO negative via summation of  the four  terms.  As a first choice,  e = 0 may  be set in order to 

s implify this search. Then  Equa t ion  14 degenerates to 

1 dV 
-- t~X12 - -  ~2X22 -1- RX 1 

2 dO 
wi th  its numerical  equivalent  o f  

1 dV 

2 dO 

where o is compu ted  via Equa t ion  1 5. A tho rough  numerical  analysis o f  the Rxl  t e rm indicates that  it 

(18)  
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Fig. 1. Transients originating from four different initial 
states in the reactor of  the numerical illustration. The 
symbol + denotes the globally stable steady state. 

is zero at the steady state, along the positive x2 axis, negative along the negative x~ axis and mostly 
positive within the rectangular domain defined by the (Xl, x2) set for which the regression Equation 15 
is valid. Its maximum value within this domain is 98.625 at the corner point xt = --  1.96, x2 = 1.482 
(corresponding to T = 70 and c = 98.9). For each interior point as well as along the boundaries of  this 
rectangular domain the $xl 2 product is sufficiently large to force negative definiteness on V if the 
numerical value of  6 is chosen to be sufficiently large. To obtain the 'safest' value of  6, we search for the 
largest positive value of  the (-- $xt 2 + Rxx) term which is found to be 24.04 at Xl = -- 0.85, x2 = 1.482 
(boundary point). The numerical value of  this term decreases gradually to negative values as x2 is 
decreased at xt = --  0.85, the cross over point being around x2 = 0.138. Hence, 6 > 3.4 will render 
Equation 18 negative everywhere in the (xb x2) domain of  interest; the exact numerical value of  6 is 
immaterial. It follows immediately that the electrolytic process in the illustrative example is asymp- 
toticaUy stable in the domain of  electrolyte temperature and concentration for which the regression 
relationship o f  the electrolyte conductivity, Equation 15, is valid. It is important to note that the pro- 
cess may be asymptotically stable in a wider range ofxa and x2, but the constraints on Equation 15 do 
not permit a rigorous numerical analysis for an extended domain. The Liapunov function-based 
approach is, of  course, not responsible for this limitation. 

It is instructive to compare the results of  Liapunov analysis to predictions via simulation. The tran- 
sient behaviour of  this reactor is illustrated in Fig. 1, showing return to the steady state from four 
different initial perturbation states. The trajectories were obtained from a digital computer simulation 
of  the dynamic equation set 

d x~ 
- 0.082 89x~ + - -  

dt 

dxz 
- 0.002 538x2 h -I 

dt 

0.205 67 

O 
0.165 45 h -1 (19a) 

(19b) 

where o is assumed to obey Equation 15 in the (xb x2) range of  interest and the numerical values in 
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Table 1 were employed in establishing the numerical values shown. Equation 19b can, of course, be 
integrated analytically to 

x2 = x2 ~ exp (-- 0.002 538t) (20) 

and x2 may directly be substituted into Equation 15; the savings in time, however, are minimal for a fast 
computer. The sudden decrease in temperature (initial states 1 and 2) results in a sharply reduced elec- 
trolyte conductivity, hence a sharp increase in the rate of Joule heat generation since the current is kept 
constant. As the electrolyte temperature increases, so does the rate of heat transmission to the sur- 
roundings and the temperature begins to drop eventually towards the steady state. The electrolyte con- 
centration increases less rapidly than temperature since the electrolyte flow rate is rather small (although 
the inlet electrolyte concentration is high). If the sudden decrease in temperature is small (initial state 4) 
the resulting increase during the transient is less rapid and the overshoot exhibited by trajectory 1 is 
avoided. When the initial change in temperature is an increase, the sudden drop in electrolyte resistivity 
results in a decrease in the rate of Joule heat generation and the electrolyte temperature will decrease 
until the rate of heat transmission to the surroundings has fallen to the point where a slow gradual 
increase towards the steady state can begin. The final approach to the steady state is independent of the 
position of the initial state, as shown by the common trajectory portion. The four distinct trajectory 
portions are somewhat approximate inasmuch as the loss in electrolyte mass due to surface evaporation 
has not been taken into account for the sake of reducing the complexity of the problem. This error is 
relatively small in view of the large electrolyte mass. 

5. Stability and transient behaviour in potentiostatic electrolysis 

When the potential drop between electrodes is kept constant, the mathematical analysis becomes 
encumbered by the dependence of the polarization slope b on e and T. In this instance an extensive set 
of polarization curves obtained at various temperatures and concentrations, but using the same elec- 
trodes, is required. As before, the S- and Q-derivatives are zero. If the effect of c and T on b is minimal, 
the analysis degenerates to the galvanostatic case. If the (/, U) relationship is nonlinear the R-derivatives 
and the entire analysis are more complicated. 

6. Small perturbations about the steady state: linear approximation to transient behaviour 

When the initial electrolyte temperature and concentration are not too different from their respective 
steady values, the transient behaviour may be obtained in an analytical form via linearization of 
Equation 6. In the case of constant-current electrolysis, a linear approximation to R in Equation 8b may 
be obtained by a truncated Taylor expansion of the electrolyte conductivity term: 

where 

1 1 
A*(T--  T) -- B*(c -- e*) 

(7 O* 

A* = and B* - 

are quantities evaluated at steady state conditions. Defining the lumped parameters 

klZA * a - ~ ' + - -  
m~ Cp 

kI2B* Co 

meCpTi 

a linear approximation to Equations 6 and 7 may be written as 
dXl 

- -  O~Xl - -  ~ x  2 
dt 

(21) 

(22a) 

(22b) 

(23a) 
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Table 2. Comparison o f  the linear approximation to r&orous simulation in 
the numerical illustration 

Response t ime (h) Electrolyte temperature (~ 

Simulation Linear approximation* 

0.05 73.93 73.96 
0.55 73.55 73.57 
1.05 73.20 73.20 
1.55 72.87 72.85 
2.05 72.55 72.52 
3.05 71.97 71.91 
5.05 70.99 70.90 

*~=0.115861h -~, /3=0.042331h -1. 

dx2 
= -- 7x2 (23b) 

dt 

for galvanostatic electrolysis. The analytical solution in this instance is 

flx2 ~ 
x l  = x l ~  - a t  + [e - a t  - -  e -v t ]  (24a) 

o~ - -  "y 

x2 = x2~ -7 t  (24b) 

In Table 2 electrolyte temperatures predicted via rigorous simulation and by Equation 24a are compared 
for the reactor illustrated numerically, in the specific case of T o = 74 ~ C and c o = 67.06 tool m -3. The 
two predictions remain very close for essentially the entire trajectory (except for the immediate neigh- 
bourhood of the steady state where the linear approximation cannot predict a slight temporary 'under- 
shoot' below the steady state temperature). The linear approach must be applied with caution; in the 
case of perturbation 3 in Fig. 1, for example, the linear approximation of 85.6 ~ C compares poorly with 
the rigorously simulated temperatures of 90.3 ~ C at t = 1.05 h. Here, the perturbed state is too far 
from the steady state for a linear approximation. 

7. The speed of transient response to a perturbation 

Inspection of Equation 6 and 7 indicates that the speed of the transient response of the reactor 
described by the CSTER model is determined by parameters ~ and 7; it follows from Equations 8d and 
8e that unless heat losses from the reactor are considerably large, the rate at which the perturbed reactor 
reapproaches its steady state depends essentially on the mass flow rate to electrolyte mass ratio. Phrased 
otherwise, the reactor time constant is approximately m e / G  if heat losses are modest (the case of a well 
insulated reactor). Thus, fast return to the steady state can be expected when the reactor free volume is 
relatively small and the electrolyte flow rate is relatively high. The numerical illustration is a converse 
case with a relatively large time constant (about 390 h). 

8. Concluding remarks 

The foregoing analysis can be extended to perturbations in 'forcing' variables, such as electrolyte flow 
rate, inflow electrolyte concentration, inflow electrolyte temperature and electric current, although the 
study of stability becomes more involved mathematically. The treatment of these cases is beyond the 
scope of the current paper. Stability and transient behaviour are important parameters for the under- 
standing of fluctuations in reactor performance and for the rational design of (computer-based) reactor 
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control. The subject matter  is of  obvious significance for the eventual automation of  certain electro- 
chemical plants. 
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A p p e n d i x  A 

A summary o f  Liapunov's stability theorem 

A dynamic system described by the differential equation set 

dx 
- -  = f ( x )  ( A 1 )  
dt 

where x is a vector whose elements are the so-called state variables, is asymptotically stable within a 
specific region I" if there exists at least one scalar function V(x) satisfying the following conditions: 

(a) V(x) > 0 for x 4 :0  (A2) 
dV 

(b) - ~  (x) < 0 for all x 4 :0  in F (A3) 

(c) lim V(x) = oo for every solution in P (A4) 
Irxll ~oo ([[x[[ is the norm of  vector x) 

The region P is called the region of asymptotic stability. If  P comprises the entire vector space x, the 
system is asymptotically stable 'in the large', or globally stable. 

Let x ~ be an initial state upon a sudden perturbation of  a system resting at steady state x = 0 (by 
translation with respect to some reference conditions, a non zero initial state may be transformed into 
the null vector); then, if conditions (a)-(c)  are satisfied within a region P, the system eventually reaches 
its steady state x = 0 regardless of  the actual position of  x ~ within F. The search for stability via 
Liapunov functions V(x) is much more efficient than attempts to solve Equation A1 for all possible 
initial conditions x ~ within an appropriate vector space. A rigorous development of  the theory sum- 
marized briefly here is presented in [16], now a classic in the literature. 

One shortcoming of the Liapunov approach is that if a suitable function V(x) cannot be found, it 
does not follow that the system is unstable; however, stability cannot be proved. The strength of  the 
approach is in the reverse case: one single V(x) guarantees stability, at least within a specific region if 
conditions (a)-(c)  are satisfied by this particular V(x). 

The size of  F may well vary with the specific form of  a Liapunov function if there are more than one; 
if one of  them indicates global stability, then the system is globally stable and any other forms of V(x), 
which predict a finite F, become immaterial. Construction strategies for Liapunov functions was a fertile 
research area several years ago; Appendix B summarizes one important construction method particularly 
useful for nonlinear systems. 

Consider, as an illustrative example, the linear second order set of  equations [ 18] 

dXl 
- -  - 2 x l  + x2 ( A 5 )  
dt 

dx2 
= x l - - x 2  (A6) 

dt 

The Liapunov function V(x) = x12/2 4- x lx2  4- x2 2 satisfies conditions (a)-(c)  for all values of  state 
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variables xt and x2; on the other hand, the Liapunov function V(x) = x~ 2 + x22 defines a finite stability 
region F: 2xl  2 - -  2XlX 2 + x22 > 0 within which condit ion (c) is satisfied. It is not  difficult to show that 
this system indeed possesses global asymptot ic  stability as indicated by  the first V(x). 

Appendix B 

Liapunov functions o f  quadratic forms 

Consider a dynamic system with state variables xl  and x2 such that x I represents displacement and x2, its 
t ime derivative, velocity. Then, the sum of  its kinetic and potential  e n e r g y ,  -12(X12 q-  X22) is always 
positive, its limit as [[x[[ = (X12 -]- X22) 1/2 ~ oo is infinity and its time derivative must be negative if  the sys- 
tem is moving towards a stable steady state, since the energy has to decrease towards its minimum value 
attained at equilibrium. Thus, the energy of  a stable system may be taken as one of  its Liapunov func- 
tions, and 

V(x) = x'Ix (B1) 

is a bona-fide Liapunov candidate (x '  is the transpose of  vector x). However, Equation B1 is rather 
restrictive in predicting the size of  the region within which a dynamic system remains asymptotical ly 
stable and it may become necessary to begin with a priori indeterminate elements in the constitutive 
matrix of  the quadratic form: 

V(x) = x ' Q x  (B2) 

where Q has to be positive definite. Let the dynamic system be represented by the vector equation 

dx/d t  = f (x ) .  Then its Liapunov derivative is obtained by  differentiating Equation B2 

dV 
dt f ' Q x  + x ' Q f  (B3) 

Since the elements of  the Q matr ix are a priori indeterminate,  a convenient choice is the following: 
qll  = 1, q~2 = q21 = e and q22 = 62 such that 62 - e z > 0. Then, Q is positive definite. In the specific case 
of  a second order system, Equation B3 has the following form, upon differentiation and algebraic 
manipulation: 

dV 
d--7 = 2[xl(f1 + el2) + x2(efl + 62f2)1 (B4) 

Equation 13 is the specific form of  Equation B4 for the electrolytic reactor considered in this paper. 
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